Станки-качалки виды, устройство, принцип работы

Самое важное по тематике: "Станки-качалки виды, устройство, принцип работы" от профессионалов. Здесь собрана вся информация и полностью раскрыта тема. В случае возникновения вопросов - задавайте их дежурному специалисту.

Виды и конструкции станков-качалок

Рисунок. 1. Конструкция станков-качалок:

а — балансирный станок-качалка: 1 — фланец (планшайба); 2 — тройник;

  • 5 -сальниковый шток; 4 — подвеска; 5- головка балансира, 6 — балансир,
  • 7 -ось балансира; 8 — траверса; 9 — электродвигатель, 10 — шатуны;
  • 11- редуктор; 12 — шкив; 13 — кривошип; 14 — контргруз;

б -безбалансирный станок-качалка: 1 — рама; 2 — стойка 3 — винтовое приспособление; 4 — канатный шкив; 5 — траверса; 6 — шатун; 7 — кривошип;

8 — редуктор; 9 — противовесы, 10 — электродвигатель.

Балансирный станок-качалка

А — точка подвеса штанг; АВ — балансир; О — центр качания балансира; В — точка крепления шатуна к балансиру; ВС — шатун; СD — кривошип; Т — тангенциальная составляющая усилия в шатуне; N — нормальная составляющая усилия шатуне; Рш — усилие в шатуне; а — переднее плечо балансира; b — заднее плечо балансира; с — расстояние от центра качания до центра тяжести груза на балансире; l — длина шатуна; r — длина кривошипа; б — угол поворота кривошипа; в — угол поворота шатуна; щ — угловая скорость

Рисунок 2- Кинематическая схема балансирного станка-качалки с комбинированным уравновешиванием

  • а)
  • б)

а — зависимость перемещения от угла поворота кривошипа; б — зависимость скорости от угла поворота кривошипа; в — зависимость ускорения от угла поворота кривошипа

Рисунок 3 — Кинематические характеристики станка-качалки

Таблица 1 — Техническая характеристика балансирных станков-качалок с грузовым уравновешиванием

СТАНОК-КАЧАЛКА (а. reversing machine; н. Pumpenbock, Tiefpumpenanlage, Gestдn — getiefpumpe; ф. pompe а balancier; и. bomba de balancнn) — агрегат для приведения в действие глубинного насоса при механизированной эксплуатации нефтяных скважин. Возвратно-поступательное движение плунжеру глубинного насоса передаётся через штанги и шток.

Станок-качалка устанавливается на фундаменте над устьем скважины. В зависимости от количества одновременно обслуживаемых скважин станки-качалки бывают индивидуальные, спаренные и групповые. На практике чаще всего применяются индивидуальные станки-качалки.

В зависимости от характера передачи движения к штоку индивидуальные станки-качалки бывают балансирного и безбалансирного типа. Наиболее распространены балансирные индивидуальные станки-качалки, которые отличаются от безбалансирных принципом действия и конструкцией механизма, преобразующего вращательное движение вала двигателя в возвратно-поступательное движение штока и колонны штанг.

Несмотря на многообразие типов и конструкций безбалансирных индивидуальных станков-качалок, они не нашли достаточного распространения в нефтедобывающей промышленности вследствие ряда существенных недостатков. Основным типом приводов глубинных плунжерных насосов в современной практике глубинно-насосной нефтедобычи являются балансирные индивидуальные станки-качалки с механическим, пневматическим и гидравлическим приводом.

Назначение станка качалки

Станомк-качамлка — один из элементов эксплуатации нефтедобывающих скважин штанговым насосом. Операторы по добыче нефти и газа определяют это оборудование как: «Индивидуальный балансирный механический привод штангового насоса».

Станок-качалка является важным видом нефтегазового оборудования и используется для механического привода к нефтяным скважинным штанговым (плунжерным) насосам. Конструкция станка-качалки представляет собой балансирный привод штанговых насосов, состоящий из редуктора и сдвоенного четырехзвенного шарнирного механизма.

Станок-качалка предназначен для индивидуального механического привода к нефтяным скважинным штанговым насосам. Станок-качалка конструктивно представляет собой индивидуальный балансирный привод штанговых насосов, состоящий из редуктора и сдвоенного четырехзвенного шарнирного механизма, с роторным и роторно-балансирным уравновешиванием, преобразующим вращательное движение кривошипов в вертикальное движение канатной подвески устьевого штока с прикрепленной к нему колонной насосных штанг.

Конструкция

Cтанок-качалка CK-7: 1 — рама; 2 — стойка; 3 — кривошипы; 4 — балансир; 5 — шатуны; 6 — редуктор; 7 — электродвигатель; 8 — противовесы; 9 — тормоз.

Станок-качалка устанавливается на специально подготовленном фундаменте (обычно бетонном), на котором устанавливаются: платформа, стойка и станция управления.

После первичного монтажа на стойку помещается балансир, который уравновешивают т. н. головкой балансира. К ней же крепится канатная подвеска (последняя соединяет балансир с полированым сальниковым штоком).

На платформу устанавливается редуктор и электродвигатель. Иногда электродвигатель расположен под платформой. Последний вариант имеет повышенную опасность, поэтому встречается редко. Электродвигатель соединяется с маслонаполненным понижающим редуктором через клино-ременную передачу. Редуктор же, в свою очередь, соединяется с балансиром через кривошипно-шатунный механизм. Этот механизм преобразует вращательное движение вала редуктора в возвратно-поступательное движение балансира.

Станция управления представляет собой коробочный блок, в котором расположена электрика. Вблизи станции управления (или прямо на ней) выведен ручной тормоз станка-качалки. На самой станции управления расположен ключ (для замыкания электросети) и амперметр. Последний — очень важный элемент, особенно в работе оператора ДНГ. Нулевая отметка у амперметра поставлена в середину шкалы, а стрелка-указатель движется то в отрицательную, то в положительную область. Именно по отклонению влево-вправо оператор определяет нагрузку на станок — отклонения в обе стороны должны быть примерно равные. Если же условие равенства не выполняется, значит, станок работает вхолостую.

станок качалка насос скважина

Рис.10.9. Схема балансирного станка-качалки:

1 — канатная подвеска; 2 — балансир с поворотной головкой; 3 — опора балансира; 4 — стойка; 5 — шатун; 6 — кривошип; 7 — редуктор; 8 — ведомый шкив; 9 — клиноременная передача; 10 — электромотор; 11 — ведущий шкив; 12 — ограждения; 13 — салазки поворотные для электромотора; 14 — рама, 15 — противовес, 16 — траверса, 17 — тормозной шкив.

Предусмотрено механизированное плавное перемещение кривошипных противовесов, при котором достигается лучшее уравновешивание СК.

Качалки оборудованы двухколодочным тормозом с ручным приводом. Тормозной барабан закреплен на трансмиссионном валу редуктора. С помощью тормоза балансир и противовесы качалки могут быть зафиксированы в любом положении. Электродвигатель устанавливается на салазках, наклон которых регулируется для достижения необходимого натяжения тиксотропных ремней трансмиссионной передачи. Изменение длины хода балансира достигается перестановкой пальца шатуна на кривошипе, а изменение числа качаний достигается сменой шкива на валу электродвигателя на другой размер.

Читайте так же:  Заявление на регистрацию ип

Основные узлы станка-качалки — рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирно-подвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т.е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной салазке.

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска. Она позволяет регулировать посадку плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

Амплитуду движения головки балансира (длина хода устьевого штока-7 на) регулируют путем изменения места сочленения кривошипа шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие). За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т.д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Станки — качалки

Технические характеристики станка-качалки

Кинематика станка-качалки

Кинематическая схема преобразующего механизма балансирного станка-качалки представляет четырехзвенник OBCD ( рис. 4.35. ). Неподвижное звено — OD (расстояние от О до D), подвижные звенья — кривошип r, шатун l и заднее плечо балансира b.

Рис. 4.35. Кинематическая схема балансирного станка-качалки

Мощность электродвигателя станка-качалки

Для приведения в действие балансирного станка-качалки приводной двигатель должен обеспечить создание на кривошипном валу редуктора момента М кр . Эффективная мощность станка-качалки:

Редукторы станков-качалок

Редуктор предназначен для уменьшения частоты вращения, передаваемой от электродвигателя кривошипам станка-качалки. Применяется в станках-качалках и других механических приводах штанговых скважинных насосов. Редуктор ( рис. 4.47 ) — двухступенчатый, с цилиндрической шевронной зубчатой передачей зацепления Новикова. Быстроходная ступень — раздвоенный шеврон, тихоходная ступень — шевронная с канавкой. Подробнее.

Основные типы балансирных станков-качалок

Стандартом 1966 г. было предусмотрено 20 типоразмеров станков-качалок (СК) грузоподьемностью от 1,5 до 20 т. Типовая конструкция СК представлена на рис. 4.51. Впервые в стране был начат выпуск приводов, в которых редуктор был поднят и установлен на подставке. Подробнее.

Канатная подвеска станка-качалки

Канатная подвеска ( рис. 4.55 ) состоит из нижней траверсы 2, в которую вварены две втулки; клиновидных зажимов 10 для крепления концов каната 7; нажимной гайки 1; подъемных винтов 3 с конусной заточкой в верхней части и отверстием для вставки ворота (нижние концы винтов имеют нарезку, которой они ввинчиваются в отверстие с нарезкой в нижней траверсе); верхней траверсы 5 с вваренной в нее втулкой 4; клиновидных плашек 6 для зажима сальникового штока 8; зажимной гайки 9 с отверстиями для вставки ворота при креплении сальникового штока.

Монтаж станка-качалки

В нашей стране применяют в основном редукторные станки-качалки . Их устанавливают на фундаменты, которые делятся на три группы:

  • бутобетонные или бетонные;
  • из бетонных труб;
  • металлические постаменты различных конструкций

Назначение, конструкция и технические характеристики станка-качалки

В нефтедобывающей отрасли эффективность во многом зависит от типа применяемого оборудования. Для полноценной комплектации и эффективной добычи необходим станок-качалка. Это оборудование является неотъемлемой частью нефтедобывающего комплекса.

Конструктивные особенности

Станки-качалки предназначены для передачи поступательного движения глубинному штанговому насосу, расположенному на дне скважины. Для уменьшения затрат на энергию оборудование должно обладать уникальной кинематической схемой. Дополнительным условием является применение современных комплектующих и компонентов.

Для анализа функциональности и особенности работы необходимо ознакомиться с конструкцией, которой обладает станок-качалка. Он состоит из силовой установки, вращательное движение от которой поступает на ведущий вал редуктора. На нем расположен кривошип с системой противовесов. Для связи кривошипа с балансиром предусмотрены шатуны и траверсы. В свою очередь, балансир установлен на опорной стойке. Для уменьшения затраты энергии на торцевой части балансира расположена откидная головка.

Правильно установленный станок имеет следующие эксплуатационные качества:

  • высокий показатель КПД. Обусловлен системой противовесов, которые позволят оптимизировать затраты энергии;
  • надежность. Станок качалка способен работать продолжительное время. Главное — обеспечивать должный уровень смазки подвижных механизмов;
  • сложность установки. Для нормальной эксплуатации станки-качалки необходимо устанавливать на обустроенные опорные платформы. Чаще всего их изготавливают методом заливки бетонной смесью.

Наряду с этой конструкцией в нефтедобывающей отрасли применяется безбалансировочное оборудование. Эти модели отличаются относительно небольшими размерами и массой, но при этом обладают более низким показателем КПД. Чаще всего устанавливаются в труднодоступных районах или местах, где обустройство полноценного фундамента затруднено.

В качестве привода чаще всего используются электродвигатели, скорость вращения вала которых не превышает 1500 об/мин. Изменение этого параметра выполняется с помощью коробки передач или ее клиноременного аналога.

Основные характеристики

Каждый станок качалка обладает индивидуальными параметрами, которые зависят от требуемых эксплуатационных свойств. Однако наряду с ними данный тип оборудования имеет общие технические характеристики. Для анализа качества станка рекомендуется ознакомиться с ними.

Читайте так же:  Как переехать в канаду из россии на пмж

Все станки-качалки должны обладать достаточно высокой производительностью. Она определяется движением штока и его интенсивностью. Помимо этого, следует учитывать эксплуатационные качества: ремонтопригодность, размеры, общую массу и сложность обслуживания. Это является важным, так как зачастую станок качалка устанавливается вдали от населенных пунктов, что затрудняет ремонт в случае возникновения поломки.

Перечень основных технических характеристик:

  • максимально допустимый показатель нагрузки на устьевом штоке. Он может варьироваться от 30 до 100 кН;
  • длина хода штока. Обычно она составляет от 1,2 до 3 м;
  • крутящий момент вала выходного редуктора. Он влияет на интенсивность движения штока и может быть равен от 6,3 до 56 кНм;
  • число ходов балансира варьируется от 1,2 до 15 в минуту.

Станок-качалка может иметь различный показатель массы, который зависит от размеров его составных элементов. В среднем вес конструкции составляет от 3,8 до 14 тонн. При этом габариты варьируются от 4,125*1,35*3,245 м до 7,95*2,25*5,83 м. Для повышения безопасности эксплуатации станок качалка комплектуется блоком управления, который предотвращает самопроизвольный запуск электродвигателя в случае отключения энергии. Это же помогает избежать аварийных ситуаций при механических поломках компонентов.

Станки-качалки могут регулироваться по нескольким параметрам, определяющими из которых является длина хода штока, а также число колебаний балансира. В каждой модели способы регулировки различны.

Особенности эксплуатации

Современный станок качалка относится к классу сложного оборудования и состоит из множества компонентов. Поэтому его эксплуатация подразумевает детальное изучение устройства, основных параметров оборудования и неукоснительное соблюдение техники безопасности.

Прежде всего необходимо сделать корректную установку оборудования. При этом учитывается не только его масса и габариты, но и характеристики грунта. В некоторых случаях для модели с небольшим весом достаточно обустроить свайный фундамент. Но чаще всего необходимо устанавливать железобетонную плиту, которая равномерно распределит вес оборудования.

Основные правила эксплуатации:

  • рабочий персонал должен пройти инструктаж по технике безопасности, детально узнать характеристики и устройство станка;
  • выполнение профилактических мероприятий по поддержанию установки в нормальном состоянии;
  • в случае возникновения аварийной ситуации оборудование должно быть отключено, работа прекращена;
  • устранением неполадок могут заниматься только квалифицированные специалисты.

При соблюдении этих правил станок-качалка прослужит длительное время и при этом сохранит свои изначальные эксплуатационно-технические свойства.

Для наглядного ознакомления с принципом работы рекомендуется посмотреть видеоматериал, в котором показаны станки-качалки:

Станки-качалки: виды, устройство, принцип работы

  • Нефтегазовое оборудование /
  • Cтанок качалка

Другие категории

Станок–качалка — это индивидуальный механический элемент (привод), применяемый в эксплуатации скважин для добычи нефти с использованием скважинного (глубинного) штангового насоса. Специалисты нефте- и газодобывающей отрасли дают следующее определение данному оборудованию: «Станок-качалка – это индивидуальный механический балансирный привод для штангового насоса».

Конструкция станка-качалки

Станок–качалка состоит из балансирного привода штанговых насосов, который в свою очередь составляют два элемента: редуктор и сдвоенный четырехзвенный шарнирный механизм.

Станок-качалка помещается на специально подготовленный фундамент (обычно бетонный), на котором устанавливают: платформу, стойку и станцию управления.

Принцип работы станка-качалки

Станок-качалка приводится в действие следующим образом:

После того, как произведен первичный монтаж, на стойку помещают балансир, который уравновешивается при помощи так называемой головки балансира. К головке балансира крепят канатную подвеску (посредством которой балансир соединяется с полированным сальниковым штоком).

На платформу устанавливают электродвигатель и редуктор. В некоторых случаях электродвигатель располагается под платформой станка-качалки. В последнем случае есть высокий риск опасности, поэтому такой вариант встречается очень редко.

Электродвигатель соединяют с наполненным маслом понижающим редуктором посредством клино-ременной передачи. В свою очередь, редуктор и балансир станка-качалки соединяются посредством кривошипно-шатунного механизма. Этот механизм предполагает преобразование вращательного движения вала редуктора в возвратно-поступательные движения балансира.

Станцией управления является коробочный блок, в котором располагается электрика и автоматика станка-качалки. Рядом со станцией управления (либо непосредственно на ней) располагается ручной тормоз станка-качалки. На станции управления располагается амперметр и ключ для замыкания электросети.

Нулевая отметка амперметра находится в середине шкалы, а стрелка-указатель может двигаться то в положительную, то в отрицательную область. Принимая во внимание отклонение влево-вправо, оператор может определить нагрузку на станок-качалку — предполагается, что отклонения в как влево, так и вправо должны быть примерно одинаковые. При невыполнении условия равенства станок-качалка функционирует вхолостую.

В Российской Федерации изготавливается станок-качалка 13 моделей в соответствии с ГОСТ 5688-76.

Основные узлы станка- качалки. Маркировка

Станки-качалки (СК)- индивидуальный механический привод ШГН.

Основными элементами СК являются: рама 13 с подставкой под редуктор и поворотной плитой 12; стойки 3; балансира 2 с головкой и опорой траверсы 15; двух шатунов 4; двух кривошипов 5 с противовесами 14 (при комбинированном или кривошипном уравновешивании); редуктора 6; тормозов 16; клиноременной передачи 7, 8; электродвигателя 9; подвески устьевого штока 1 с канатом; ограждения 11 кривошипно-шатунного механизма.

Рама изготовлена в виде двух полозьев, соединенных поперечными связями, и крепится к бетонному основанию или свайному полю. Стойка — из профильного проката, четырехногая.

Балансир изготовлен из профильного проката; однобалочной или двухбалочной конструкции. Головка балансира — поворотная или откидывающаяся вверх для беспрепятственного прохода спуско — подъемного (талевого блока, крюка, элеватора) и скважинного оборудования при подземном ремонте скважин. Для ее фиксации в рабочем положении в шайбе головки предусмотрен паз, в который входит клин защелки.

Опора балансира — ось, оба конца которой установлены в сферических роликоподшипниках. К средней части от квадратного сечения приварена планка, через которую опора балансира соединяется с балансиром.

Траверса— прямая, из профильного проката. С ее помощью балансир соединяется с двумя параллельно работающими шатунами.

Опора траверсы шарнирно соединяет балансир с траверсой. Средняя часть оси установлена в сферическом роликоподшипнике, корпус которого болтами прикреплен к нижней полке балансира.

Читайте так же:  Выезд детей за границу

Шатун— стальная трубная заготовка, на одном конца, на одном конце которой вварена верхняя головка шатуна, а на другом- башмак. Палец верхней головки шатуна шарнирно соединен с траверсой. Палец кривошипа конусной поверхностью вставляется в отверстие кривошипа и затягивается с помощью гаек.

Кривошип— ведущее звено преобразующего механизма СК. В нем предусмотрены отверстия для изменения длины хода устьевого штока. На кривошипе установлены противовесы (кривошипные грузы), которые могут перемещаться.

Редуктор типа Ц2НШ представляет собой совокупность двух пар цилиндрических шевронных зубчатых передач, выполненных с зацеплением Новикова. Опоры ведущего и промежуточного валов выполнены на роликоподшипниках. На конце ведущего вала насаживаются шкивы тормоза и клиноременной передачи, положение которых после определенного срока эксплуатации необходимо менять для увеличения общего срока службы ведомого колеса редуктора. Для этого на обоих концах ведомого вала имеются по два шпоночных паза.

Смазка зубчатых колес и подшипников валов осуществляется из ванны редуктора. Объем масляной ванны — 180 литров. Масса редуктора- 2647 кг.

Тормоз — двухколодочный. Правая и левая колодки прикреплены к редуктору. С помощью стяжного устройства колодки зажимают тормозной шкив, насаженный на ведущий вал редуктора. Рукоятка тормоза, насаженная на стяжной винт, вынесена в конец разы, за электородвигатель.

Салазки поворотные под электродвигатель обеспечивают быструю смену и натяжение клиновых ремней, служащих для передачи движения от электродвигателя к редуктору. Выполнены они в виде рамы, которая шарнирно укреплена на заднем конце рамы СК. Рама с салазками поворачивается вращением винта.

Привод СК осуществляется от электродвигателя со скоростью вращения вала 750, 1000 и 1500 об/мин. На валу электродвигателя установлена конусная втулка, на которую насажен ведущий шкив клиноременной передачи.

Поскольку головка балансира совершает движения по дуге, то для ее сочленения с устьевым штоком и штангами имеется гибкая канатная подвеска. Она позволяет так же регулировать посадку плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра.

Подвеска устьевого штока типа ПСШ состоит из верхней и нижней траверс, двух зажимов каната и зажима устьевого штока.

Штоки сальниковые устьевые предназначены для соединения колонны насосных штанг с канатной подвеской СК.

Предусмотрено 13 типоразмеров СК. Каждый их тип характеризуется наибольшей допускаемой нагрузкой на устьевой шток (20…200 кН), длиной хода штока ( 0,3…6м)и крутящим моментом на ведомом валу редуктора (2,5…125 кН).

Видео (кликните для воспроизведения).

— с балансирным уравновешиванием — СК2 (грузы размещаются на балансире);

— с комбинированным уравновешиванием — СК3(грузы располагаются на балансире и кривошипах);

— с кривошипным уравновешиванием – СК4, СК5, СК6, СК8 и т.д.(грузы располагаются на кривошипах).

На месторождениях ТПДН «Муравленковскнефть» применятся следующие

1. СК8-3-4000 («бакинка»)

8- мак. допустимая нагрузка, тонн (1т- 10кН)

3- мак. длина хода устьевого штока, метр

4000- наибольший крутящий момент на валу, кН *м

[1]

2. ПФ8-3,5-4000 («тюменка»)

3. UP 9Т-2500-3500 («румынка»)

9- мак. допустимая нагрузка, тонн (1т- 10кН)

2500- мак. длина хода устьевого штока, мм

3500- наибольший крутящий момент на валу, кН *м

4. LAFKIN С320-173-120 («американка»)

320 — наибольший крутящий момент на валу, фунт/фут

173 — мак. допустимая нагрузка, фунт

120 — мак. длина хода устьевого штока, дюймов

5. LEGRAND C-456-213-120 («Канада»)

Управление электродвигателем СК обычно проводится упрощенной системой блокировки и защиты. Разработан блок управления БУС- 3М, с помощью которого можно осуществлять управление в ручном, автоматическом, дистанционном и программном режимах работы. Он также проводит самозапуск установки после случайного отключения электроэнергии. Блок управления позволяет отключать установку при обрыве клиновых ремней и полированного штока, при заклинивании плунжера насоса и редуктора, а также при резком изменении нагрузки электродвигателя. Отключение установки регулируется по времени срабатывания аппаратуры и отклонению контролируемых параметров.

Дата добавления: 2016-06-18 ; просмотров: 5142 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Основные типы балансирных станков-качалок

Типы станков-качалок

Стандартом 1966 г. было предусмотрено 20 типоразмеров станков-качалок (СК) грузоподьемностью от 1,5 до 20 т. Типовая конструкция СК представлена на рис. 4.51. Впервые в стране был начат выпуск приводов, в которых редуктор был поднят и установлен на подставке.

[2]

Рис. 4.51. Схема станка-качалки типа СКД с редуктором на раме и кривошипным уравновешиванием

При создании размерного ряда учитывалась унификация узлов и элементов с той целью, чтобы свести к минимуму разнообразие быстроизнашивающихся узлов и тем самым упростить изготовление, ремонт, обслуживание и снабжение оборудования запасными элементами. Для этого из 20 типов станков-качалок 9 — были выполнены как базовые, а остальные 11 — в виде их модификаций. Модификации заключались:

  • в изменении соотношений длин переднего и заднего плеч балансира путем замены головки балансира или всего балансира, что приводило к изменению грузоподъемности и длины хода станка-качалки;
  • в применении редуктора с другим крутящим моментом;
  • в одновременной замене балансира и редуктора.

Фактически в серийный выпуск пошли только 9 — моделей, включая 7 базовых и 2 модифицированных. Условное обозначение на примере 4СКЗ-1,2-700 расшифровывается следующим образом:

  • 4СК — станок-качалка 4 — базовой модели;
  • 3 — допускаемая нагрузка на головку балансира 3 т;
  • 1,2 — наибольшая длина хода точки подвеса штанг 1,2 м;
  • 700 — допускаемый крутящий момент на редукторе 700 кг · м.

Станки-качалки по ГОСТ 5866-76

Из намечавшихся к выпуску 30 типоразмеров производством было освоено 7 моделей. Конструкции станков-качалок по данному стандарту принципиально не отличаются от предыдущих типов.

Станки-качалки СК5-3-2500 и СК6-2,1-2500 отличаются друг от друга длиной переднего плеча балансира; СК8-3,5-4000 и СК8-3,5-5600 различаются типоразмером редуктора и мощностью электродвигателя.

Читайте так же:  Перспективы бизнеса по производству рвд

Рис. 4.50. Схема станка-качалки по ГОСТ 5866-66

Станки-качалки по ОСТ 26-16-08-87

Указанным отраслевым стандартом впервые в нашей стране (тогда СССР) был предусмотрен выпуск станков-качалок дезаксиального типа 6 размеров ( рис. 4.51, 4.52 ).

Рис. 4.52. Схема станка-качалки типа СКДТ с редуктором на тумбе, с кривошипным уравновешиванием

Стандартом предусмотрено два вида исполнения — с установкой редуктора на раме или на тумбе. Таким образом, образуется 12 моделей приводов.

Принципиальное отличие дезаксиальных станков-качалок от ранее применявшихся у нас исключительно аксиальных в том, что дезаксиальные станки-качалки обеспечивают разное время хода штанг вверх и вниз, тогда как аксиальные — одинаковое. Поскольку разница в кинематике конструктивно обеспечивается элементарными средствами, т.е. тем или иным расположением редуктора относительно балансира и не требует специальных изменений конструкции, то станки-качалки по рассматриваемому отраслевому стандарту не отличаются от аналогичных по Госстандарту.

Условное обозначение рассмотрим на примере СКДТ3-1,5-710:

  • СК — станок-качалка;
  • Д — дезаксиальный;
  • Т — редуктор установлен на тумбе;
  • 3 — номинальная нагрузка на устьевой шток 3 т;
  • 1,5 — максимальная длина хода устьевого штока 1,5 м;
  • 710 — номинальный крутящий момент на ведомом валу редуктора 710 кг · м.

Тихоходные станки-качалки

С ростом числа малодебитных скважин (с дебитом менее 5 м3/сут) все острее вставала проблема их оптимальной эксплуатации. Использование периодической эксплуатации связано с целым рядом существенных неблагоприятных факторов, в числе которых: неравномерная выработка пласта, неэффективное использование наземного и подземного оборудования, недостаточный межремонтный период по сравнению с непрерывно функционирующими скважинами, затруднения, возникающие в зимнее время и др.

[3]

Какие нагрузки действуют на штанги и на станок-качалку?

Колонна насосных штанг работает в очень сложных усло­виях. На штанги действуют большие (до 150 кН), переменные, ассиметричные нагрузки. В верхней части штанг они носят пульсирующий характер, а в нижней — знакопеременный. Боковая поверхность штанг вследствие искривленности сква­жины трется о внутреннюю поверхность НКТ и изнашивается. Коррозионно-активная среда (минерализованная вода, H2S, С02) и абразивные примеси (песок) приводят к износу штанг, заклиниванию плунжера. Также возможно воздействие по­вышенной температуры, особенно при применении тепловых методов повышения нефтеотдачи.

В точке подвеса штанг действуют следующие нагрузки: статические (или постоянные) Рсти переменные нагрузки — динамические (инерционные Рини вибрационные Pви6) и силы трения Ртр .

В зависимости от некоторых технологических характери­стик работы ШСНУ различают статический и динамический режим ее работы. Для статических режимов работы установки динамические составляющие в общей нагрузке, действующей на колонну штанг, являются небольшими и не оказывают значительного влияния на работу всей системы. Если же динамические составляющие существенны по величине, они приводят к значительным отличиям в работе ШСНУ. Режимы работы установки, при которых динамические составляющие существенны, называются динамическими.

Совместное действие этих нагрузок обусловливает в точке подвеса штанг максимальные при ходе вверх (в) и минималь­ные при ходе вниз (н) нагрузки:

(1)

(2)

Статические нагрузки обусловлены весом штанг в жидкости

и весом поднимаемого столба жидкости . При ходе вверх статическая нагрузка

(3)

При ходе вниз нагнетательный клапан открывается, нагрузка

снимается со штанг и передается на трубы, так как связанный с ними всасывающий клапан закрыт. Тогда статическая нагрузка на штанги при ходе вниз

(4)

При работе ШСНУ штанги постоянно находятся в жидкости. На них действует выталкивающая архимедова сила. Тогда вес штанг в жидкости

(5)

где

— вес штанг в воздухе, — коэффициент, учитывающий архимедову силу или потерю веса штанг в жидкости:

(6)

где

— площадь сечения штанг; — давление жидкости в трубах под плунжером; — атмосферное давление.

Давление в трубах Ртопределяется суммой гидростатиче­ского столба жидкости в трубах Р1потерь давления на трение жидкости в трубах, устьевого давления за вычетом давления раз­грузки в результате газлифтного эффекта (выполнения подъ­емной работы энергией расширения выделяющегося из нефти газа).

Инерционные нагрузки обусловлены ускорением колонны штанг при изменении движения вверх и вниз (в нижней и верх­ней мертвых точках) и инерцией столба жидкости в момент на­чала ее движения. Инерционная нагрузка равна произведению массы на ускорение.

Вибрационные (колебательные) нагрузки вызваны тем, что колонна насосных штанг совершает вынужденные колебания, которые придает ей станок-качалка, а в штангах кроме этого возникают собственные колебания под действием ударного приложения на плунжер и снятия нагрузки Рж. Инерционные и вибрационные нагрузки вызваны движением колонны штанг, поэтому их сумму называют динамическими нагрузками. Они возникают при больших числах качаний и большой глубине спуска насоса.

Силы трения состоят из сил: а) механического трения ко­лонны штанг и труб, особенно в наклонных и искривленных скважинах; б) трения плунжера о стенки цилиндра; в) гидро­динамического трения штанг в жидкости; г) гидравлического сопротивления в нагнетательном клапане; е) гидравлического сопротивления (трения) при движении жидкости в трубах. Эти силы незначительные по сравнению с весом штанг, поэтому при расчете нагрузок ими можно пренебречь. В наклонно-направленных и искривленных скважинах (угол наклона пре­вышает 5°) силы механического трения существенны и ими пренебрегать уже нельзя. При статической нагрузке более 50 кН эти силы уже больше 1 кН и могут достигать 10—15 кН.

Дата добавления: 2016-06-15 ; просмотров: 2970 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Основные узлы станка- качалки. Маркировка

Станки-качалки (СК)- индивидуальный механический привод ШГН.

Основными элементами СК являются: рама 13 с подставкой под редуктор и поворотной плитой 12; стойки 3; балансира 2 с головкой и опорой траверсы 15; двух шатунов 4; двух кривошипов 5 с противовесами 14 (при комбинированном или кривошипном уравновешивании); редуктора 6; тормозов 16; клиноременной передачи 7, 8; электродвигателя 9; подвески устьевого штока 1 с канатом; ограждения 11 кривошипно-шатунного механизма.

Читайте так же:  Коэффициент эффективности капитальных вложений

Рама изготовлена в виде двух полозьев, соединенных поперечными связями, и крепится к бетонному основанию или свайному полю. Стойка — из профильного проката, четырехногая.

Балансир изготовлен из профильного проката; однобалочной или двухбалочной конструкции. Головка балансира — поворотная или откидывающаяся вверх для беспрепятственного прохода спуско — подъемного (талевого блока, крюка, элеватора) и скважинного оборудования при подземном ремонте скважин. Для ее фиксации в рабочем положении в шайбе головки предусмотрен паз, в который входит клин защелки.

Опора балансира — ось, оба конца которой установлены в сферических роликоподшипниках. К средней части от квадратного сечения приварена планка, через которую опора балансира соединяется с балансиром.

Траверса— прямая, из профильного проката. С ее помощью балансир соединяется с двумя параллельно работающими шатунами.

Опора траверсы шарнирно соединяет балансир с траверсой. Средняя часть оси установлена в сферическом роликоподшипнике, корпус которого болтами прикреплен к нижней полке балансира.

Шатун— стальная трубная заготовка, на одном конца, на одном конце которой вварена верхняя головка шатуна, а на другом- башмак. Палец верхней головки шатуна шарнирно соединен с траверсой. Палец кривошипа конусной поверхностью вставляется в отверстие кривошипа и затягивается с помощью гаек.

Кривошип— ведущее звено преобразующего механизма СК. В нем предусмотрены отверстия для изменения длины хода устьевого штока. На кривошипе установлены противовесы (кривошипные грузы), которые могут перемещаться.

Редуктор типа Ц2НШ представляет собой совокупность двух пар цилиндрических шевронных зубчатых передач, выполненных с зацеплением Новикова. Опоры ведущего и промежуточного валов выполнены на роликоподшипниках. На конце ведущего вала насаживаются шкивы тормоза и клиноременной передачи, положение которых после определенного срока эксплуатации необходимо менять для увеличения общего срока службы ведомого колеса редуктора. Для этого на обоих концах ведомого вала имеются по два шпоночных паза.

Смазка зубчатых колес и подшипников валов осуществляется из ванны редуктора. Объем масляной ванны — 180 литров. Масса редуктора- 2647 кг.

Тормоз — двухколодочный. Правая и левая колодки прикреплены к редуктору. С помощью стяжного устройства колодки зажимают тормозной шкив, насаженный на ведущий вал редуктора. Рукоятка тормоза, насаженная на стяжной винт, вынесена в конец разы, за электородвигатель.

Салазки поворотные под электродвигатель обеспечивают быструю смену и натяжение клиновых ремней, служащих для передачи движения от электродвигателя к редуктору. Выполнены они в виде рамы, которая шарнирно укреплена на заднем конце рамы СК. Рама с салазками поворачивается вращением винта.

Привод СК осуществляется от электродвигателя со скоростью вращения вала 750, 1000 и 1500 об/мин. На валу электродвигателя установлена конусная втулка, на которую насажен ведущий шкив клиноременной передачи.

Поскольку головка балансира совершает движения по дуге, то для ее сочленения с устьевым штоком и штангами имеется гибкая канатная подвеска. Она позволяет так же регулировать посадку плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра.

Подвеска устьевого штока типа ПСШ состоит из верхней и нижней траверс, двух зажимов каната и зажима устьевого штока.

Штоки сальниковые устьевые предназначены для соединения колонны насосных штанг с канатной подвеской СК.

Предусмотрено 13 типоразмеров СК. Каждый их тип характеризуется наибольшей допускаемой нагрузкой на устьевой шток (20…200 кН), длиной хода штока ( 0,3…6м)и крутящим моментом на ведомом валу редуктора (2,5…125 кН).

— с балансирным уравновешиванием — СК2 (грузы размещаются на балансире);

— с комбинированным уравновешиванием — СК3(грузы располагаются на балансире и кривошипах);

— с кривошипным уравновешиванием – СК4, СК5, СК6, СК8 и т.д.(грузы располагаются на кривошипах).

На месторождениях ТПДН «Муравленковскнефть» применятся следующие

1. СК8-3-4000 («бакинка»)

8- мак. допустимая нагрузка, тонн (1т- 10кН)

3- мак. длина хода устьевого штока, метр

4000- наибольший крутящий момент на валу, кН *м

2. ПФ8-3,5-4000 («тюменка»)

3. UP 9Т-2500-3500 («румынка»)

9- мак. допустимая нагрузка, тонн (1т- 10кН)

2500- мак. длина хода устьевого штока, мм

3500- наибольший крутящий момент на валу, кН *м

4. LAFKIN С320-173-120 («американка»)

320 — наибольший крутящий момент на валу, фунт/фут

173 — мак. допустимая нагрузка, фунт

120 — мак. длина хода устьевого штока, дюймов

5. LEGRAND C-456-213-120 («Канада»)

Управление электродвигателем СК обычно проводится упрощенной системой блокировки и защиты. Разработан блок управления БУС- 3М, с помощью которого можно осуществлять управление в ручном, автоматическом, дистанционном и программном режимах работы. Он также проводит самозапуск установки после случайного отключения электроэнергии. Блок управления позволяет отключать установку при обрыве клиновых ремней и полированного штока, при заклинивании плунжера насоса и редуктора, а также при резком изменении нагрузки электродвигателя. Отключение установки регулируется по времени срабатывания аппаратуры и отклонению контролируемых параметров.

Видео (кликните для воспроизведения).

Дата добавления: 2015-08-31 ; просмотров: 601 . Нарушение авторских прав

Источники


  1. Данилов, Е.П. Жилищные споры: Комментарий законодательства. Адвокатская и судебная практика. Образцы исковых заявлений и жалоб. Справочные материалы / Е.П. Данилов. — М.: Право и Закон, 2018. — 352 c.

  2. Кудрявцев, В. В. История и методология физики 2-е изд., пер. и доп. Учебник для магистров / В.В. Кудрявцев. — М.: Юрайт, 2015. — 230 c.

  3. Абдулаев, М. И. Теория государства и права / М.И. Абдулаев. — М.: Санкт-Петербург, Издательский дом «Право», 2010. — 468 c.
Станки-качалки виды, устройство, принцип работы
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here